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1. 

The free vibrations of circular, isotropic plates have been of practical and academic interest
for over a century and a half [1]. Extensive information on eigenvalues and mode shapes
is available when the plate boundary is either clamped, free or simply supported.

A rather limited amount of information is available in the case of vibrating circular
plates of polar orthotropy [2–4] and it is very scarce when dealing with circular plates of
rectangular orthotropy, the problem being of considerable technological importance.

A recent study dealt with clamped circular plates of rectangular orthotropy, where it
is a rather simple task to construct polynomial co-ordinate functions that satisfy identically
the essential boundary conditions [5]. The optimized Rayleigh–Ritz method was employed
to obtain the fundamental frequency coefficient.

The present study deals with the determination of the fundamental frequency of
transverse vibration of: (1) a solid, simply supported circular plate of rectangular
orthotropy (Figure 1(a)); and (2) a circular annular plate the material of which obeys the
same constitutive relations, simply supported at the outer boundary and free at the inner
contour (Figure 1(b)).

The same polynomial co-ordinate functions that satisfy identically the outer, essential
boundary condition are used for both problems. Clearly, in the case of the doubly
connected plate, the energy functional is evaluated between the inner and outer
boundaries [5].

The fundamental eigenvalue is determined by means of the optimized Rayleigh–Ritz
method. Good engineering accuracy is achieved in the case of an isotropic plate.

2.   

Using Lekhnitskii’s classical notation [6], one expresses the governing functional in the
form
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where W(x, y) is the amplitude of transverse vibration.

0022–460X/98/080403+04 $25.00/0/sv971271 7 1998 Academic Press Limited



a

b

(b)(a)

a

   404

Figure 1. The vibrating structural systems under study: (a) solid circular plate simply supported, (b) annular
circular plate simply supported at the outer boundary and free at the inner.

As shown in previous studies [7], one is able to approximate the fundamental mode of
vibration of isotropic circular plates by means of the polynomial co-ordinate function

W2Wa (x, y)=A0(a0rg + b0r2 +1), (2a)

where r=zx2 + y2; g=Rayleigh’s optimization parameter; and a0 and b0 are parameters
that are determined substituting equation (2a) in the boundary conditions. For the
isotropic plate, they are

W(a)=0, Mr (a)=−D0d2W
dr2 +

n

r
dW
dr 1br= a

=0. (3a, b)

Expression (3b) constitutes the natural boundary condition: the radial bending moment
at r= a is equal to zero, n being the Poisson ratio.

Clearly, in the case of a circular plate of rectangular orthotropy it will be a rather
complicated task to construct a polynomial co-ordinate function that satisfies the natural
boundary condition at the outer boundary. It appears reasonable then to determine a0 and
b0 in the case of circular plates of rectangular orthotropy from the conditions

W(a)=0,
d2W
dr2 +

n2

r
dW
dr br= a

=0 (4a, b)

since in the case of isotropic circular plates, n2 = n, the approximating function (2a) yields
excellent accuracy when the plate is simply connected.

The accuracy of the results can be improved by taking additional co-ordinate functions.
One has then

Wa (x, y)= s
N

n=0

An (anrg + bnr2 +1)r2n. (5)

In the present study numerical values of the fundamental frequency coefficient
V1 =zrh/D1v1a2 have been obtained for N=0.

Substituting equation (5) in equation (1) and requiring that

1J
1An

=0, n=0, 1, . . . , N, (6)

one obtains a homogeneous linear system of equations in the An’s. The non-triviality
condition yields a secular determinant, the lowest root of which constitutes the
fundamental frequency coefficient.
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T 1

Values of V1 in the case of solid (b/a=0) and annular, isotropic plates

Results available
in reference [8]

Present study, ZXXXXXXCXXXXXXV
b/a n=1/3 n=1/3 n=0·3

0 4·98 — —
0·1 4·99 4·933 4·86
0·2 4·88 4·726 —
0·3 4·74 4·654 4·66
0·4 4·78 4·752 —
0·5 5·06 5·040 5·07
0·6 5·67 5·664 —
0·7 6·86 6·864 6·93
0·8 9·45 9·431 —
0·9 17·51 17·81 17·7

Since V1 is an upper bound with respect to the exact result of the eigenvalue, by
minimizing it with respect to g one is able to optimize V1 [7].

Admittedly, in the case of rectangular orthotropic plates the mode shapes are also
functions of the azimuthal co-ordinate u but, as a first order approximation, it seems
reasonable to disregard this variation when determining the fundamental frequency
parameter.

3.  

In Table 1 one depicted values of V1 for the isotropic plate for which

D1 =D2 =D3 =D, D3 =D1n2 +2Dk . (5)

The values of V1 =zrh/Dv1a2 are determined for n2 = n=1/3 in order to compare with
the exact results available in reference [8].†

For b/a=0·3, the present result is 2% higher than the value reported in reference [8].
For other values of b/a, the agreement is quite good from an engineering viewpoint, and
for b/a=0·9 the fundamental eigenvalue determined using the present approach, 17·51,
is lower than the value presented in reference [8]: 17·81. Since the frequency coefficients
calculated in this study are upper bounds one can conclude that, for this case, the value
of V1 obtained using the optimized Rayleigh–Ritz method is more accurate than the one
available in reference [8].

It is interesting to notice that in the case of a solid, simply supported circular plate the
exact value of V1 determined in reference [1] is 4·93515 for n=0·30.

The present approach yields V1 =4·9361 which is in remarkably good agreement with
the exact fundamental frequency coefficient.

In Table 2 are shown values of V1 =zrh/D1v1a2 for orthotropic circular plates for
which D2/D1 =1/2, Dk /D1 =1/3 and n2 =1/3.

In view of the good engineering agreement observed in the case of the results depicted
in Table 1, one may expect that the eigenvalues contained in Table 2 will possess sufficient
accuracy from a practical viewpoint. The results can be improved by adding more

† In Table 1 are depicted the exact results contained in [8] for n=1/3 and 0·3. This was done for illustration
purposes.
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T 2

Values of V1 in the case of solid
(b/a=0) and annular circular plates
of rectangular orthotropy (D2/D1 =

1/2, Dk /D1 =1/3, n2 =1/3)

b/a V1

0 4·4933
0·1 4·5000
0·2 4·4075
0·3 4·2795
0·4 4·3155
0·5 4·5652
0·6 5·1139
0·7 6·1918
0·8 8·5244
0·9 15·7845

co-ordinate functions in the radial and also the azimuthal variables since, due to the
orthotropic characteristics of the plate material, even the fundamental mode will depict
variations with respect to the angular co-ordinate.

From the analysis of the results shown in Table 1, it becomes apparent that more
accurate eigenvalues are needed in the case of circular, annular plates. Most of the data
available has been determined over three decades ago with limited computational
capabilities.
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